Lecture 2 Entropy

1. The two-box model: coin flip, ideal gas in boxes, light absorption, ...

 DoF: \(n_A, n_B \)

 Constraints: \(N = n_A + n_B \)

 Extremum: \(N = N! / n_A! n_B! \).

 Solving \(\frac{dN}{dn_A} = 0, \frac{dN}{dn_B} = 0 \), subject to \(N = n_A + n_B \).

 Equilibrium state: \(n_A = n_B = N/2 \).

2. \(N \) multiplies when having two independent systems.

 Searching for an "intensive" variable: one that scales with the number of particles, one that adds with two independent systems.

 Define Entropy

 \[S = k \log N \]

 with natural log, Boltzmann const. \(k = 1.38 \times 10^{-23} \text{ J/K} \)

 \[\log_{10} n_A \times n_B = S_{AB} = S_A + S_B \]

 One particle having the probability of \(p_i \) in the \(i \)th box.

 Each microstate corresponds to the particle in each box, with different probabilities.

 Macrostate: \(\{ p_i \} \)

 Calculating the entropy:

 Considering \(N \) incidences of the one-particle system (ensemble), equivalent to \(N \) particles.

 \[\{ p_i \} \xrightarrow{x_N} \{ n_i \} \]

 where \(p_i = n_i / N \) according to the definition of probability, and \(N = \sum_i n_i \)

\[N\text{-particle multiplicity} \]

\[n_N = N! / (n_1! n_2! ... n_i! ...) = N! / \prod_i n_i! \]

\[N\text{-particle entropy} \]

\[S_N = k \ln n_N = N \cdot S \] (one particle entropy)
One-particle entropy

\[S = \frac{1}{N} \sum \frac{N!}{\prod N \times i, N} = \frac{k}{N} \left(\ln N! - \sum \ln N \times i! \right) \]

Stirling's approximation:

\[\frac{k}{N} \left[N \ln N - N - \sum \ln N \times i! \right] \]

\[N = \sum N \ln N - \sum N \times i - \sum N \ln N + \sum N \times i \]

\[= \frac{k}{N} \sum N \times \ln N - \ln N \times i \]

\[= k \sum \frac{N \times i}{N} \ln \frac{N \times i}{N} \]

\[= -k \sum \frac{N \times i}{N} \ln \frac{N \times i}{N} \]

4. Entropy is defined over any probability distributions \(\{ p_i \} \)

Two-state model:

\[\{ p_1, p_2 \} = \begin{bmatrix} 1 & 0 \\ 0.5 & 0.5 \\ 0.4 & 0.6 \end{bmatrix} \]

\[S = 0 \quad 0.69 k \quad 0.67 k \]

Four-state model:

\[\{ p_1, p_2, p_3, p_4 \} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix} \]

\[S = 0 \quad 1.39 k \quad 0.69 k \]

5. What is entropy?

Thermodynamics: high entropy \(\rightarrow \) more disorder

Statistics: for any probability distribution \(\{ p_i \} \)

\[S = -\sum p_i \ln p_i \]

maximize \(S \) under certain constraints gives the most probable distribution

Information theory: for a random code

\[H = -\sum p_i \ln p_i \] (in units of bits)

\(H \) describes the information content of a message (higher \(\rightarrow \) more information)

Typical entropy of English language: \(~ 1 \text{ bit per letter. (highly redundant)}\)